5,789 research outputs found

    Evolutionary Psychology

    Get PDF

    Tertiary-Quaternary intra-plate magmatism in Europe and its relationship to mantle dynamics

    Get PDF
    Anorogenic intra-plate magmatism was widespread in Europe from early Tertiary to Recent times, extending west to east from Spain to Bulgaria, and south to north from Sicily to northern Germany. Magmatism is spatially and temporally associated with Alpine-Pyrenean collisional tectonics, the development of an extensive lithospheric rift system in the northern foreland of the Alps, and, locally, with uplift of Variscan basement massifs (Massif Central, Rhenish Massif, Bohemian Massif). The volcanic regions vary in volume from large central volcanoes (e.g. Cantal, Massif Central;Vogelsberg, northern Germany), to small isolated plugs (e.g. Urach and Hegau provinces in southern Germany). Within the Mediterranean region, the Dinarides, the Pannonian Basin and Bulgaria, anorogenic volcanism locally post-dates an earlier phase of subduction-related magmatism. The major and trace element and Sr-Nd-Pb isotope characteristics of the most primitive mafic magmatic rocks (MgO > 6 wt %) provide important constraints on the nature of the mantle source and the conditions of partial melting.. These are predominantly sodic (melilitites, nephelinites, basanites and alkali olivine basalts); however, locally, potassic magma types (olivine leucitites, leucite nephelinites) also occur. In several localities (e.g., Sicily; Vogelsberg and the Rhine Graben, Germany; Calatrava, central Spain) olivine- and quartz-tholeiites form a significant component of the magmatism. The sodic magmas were derived by variable degrees of partial melting (~ 0.5 - 5 %) within a transitional zone between garnet-peridotite and spinel-peridotite mantle facies, close to the base of the lithosphere; the potassic magma types are interpreted as partial melts of enriched domains within the lithospheric mantle. Mantle partial melting was induced by adiabatic decompression of the asthenosphere, locally in small-scale, plume-like, diapirs which appear to upwell from ~ 400 km depth

    A CO Survey of Gravitationally Lensed Quasars with the IRAM Interferometer

    Full text link
    We present the results of a CO survey of gravitationally lensed quasars, conducted with the Plateau de Bure Interferometer over the last three years. Among the 18 objects surveyed, one was detected in CO line emission, while six were detected in the continuum at 3mm and three in the continuum at 1mm. The low CO detection rate may at least in part be due to uncertainties in the redshifts derived from quasar broad emission lines. The detected CO source, the z=3.2 radio quiet quasar MG0751+2716, is quite strong in the CO(4-3) line and in the millimeter/submillimeter continuum, the latter being emission from cool dust. The integrated CO line flux is 5.96 +- 0.45 Jy.km/s, and the total molecular gas mass is estimated to be in the range M(H_2) = 1.6-3.1 X 10^9 solar masses.Comment: 5 pages, 2 figures, uses aa.cls and psfig.st

    Acceptance checkout equipment - Spacecraft Monthly progress report, 15 Jan. - 15 Feb. 1966

    Get PDF
    Acceptance checkout equipment and spacecraft testin

    Mafic alkaline metasomatism in the lithosphere underneath East Serbia: evidence from the study of xenoliths and the host alkali basalts

    Get PDF
    Effects of mafic alkaline metasomatism have been investigated by a combined study of the East Serbian mantle xenoliths and their host alkaline rocks. Fertile xenoliths and tiny mineral assemblages found in depleted xenoliths have been investigated. Fertile lithologies are represented by clinopyroxene (cpx)-rich lherzolite and spinel (sp)-rich olivine websterite containing Ti–Al-rich Cr-augite, Fe-rich olivine, Fe–Al-rich orthopyroxene and Al-rich spinel. Depleted xenoliths, which are the predominant lithology in the suite of East Serbian xenoliths, are harzburgite, cpx-poor lherzolite and rare Mg-rich dunite. They contain small-scale assemblages occurring as pocket-like, symplectitic or irregular, deformation-assisted accumulations of metasomatic phases, generally composed of Ti–Al- and incompatible element-rich Cr-diopside, Cr–Fe–Ti-rich spinel, altered glass, olivine, apatite, ilmenite, carbonate, feldspar, and a high-TiO2 (c. 11 wt%) phlogopite. The fertile xenoliths are too rich in Al, Ca and Fe to simply represent undepleted mantle. By contrast, their composition can be reproduced by the addition of 5–20 wt% of a basanitic melt to refractory mantle. However, textural relationships found in tiny mineral assemblages inside depleted xenoliths imply the following reaction: opx+sp1 (primary mantle Cr-spinel) ±phlogopite+Si-poor alkaline melt=Ti–Al-cpx+sp2 (metasomatic Ti-rich spinel)±ol±other minor phases. Inversion modelling, performed on the least contaminated and most isotopically uniform host basanites (87Sr/86Sr=c. 0.7031; 143Nd/144Nd=c. 0.5129), implies a source that was enriched in highly and moderately incompatible elements (c. 35–40× chondrite for U–Th–Nb–Ta, 2× chondrite for heavy rare earth elements (HREE), made up of clinopyroxene, carbonate (c. 5%), and traces of ilmenite (c. 1%) and apatite (c. 0.05%). A schematic model involves: first, percolation of CO2- and H2O-rich fluids and precipitation of metasomatic hydrous minerals; and, second, the subsequent breakdown of these hydrous minerals due to the further uplift of hot asthenospheric mantle. This model links intraplate alkaline magmatism to lithospheric mantle sources enriched by sublithospheric melts at some time in the past

    First redshift determination of an optically/UV faint submillimeter galaxy using CO emission lines

    Full text link
    We report the redshift of a distant, highly obscured submm galaxy (SMG), based entirely on the detection of its CO line emission. We have used the newly commissioned Eight-MIxer Receiver (EMIR) at the IRAM 30m telescope, with its 8 GHz of instantaneous dual-polarization bandwidth, to search the 3-mm atmospheric window for CO emission from SMMJ14009+0252, a bright SMG detected in the SCUBA Lens Survey. A detection of the CO(3--2) line in the 3-mm window was confirmed via observations of CO(5--4) in the 2-mm window. Both lines constrain the redshift of SMMJ14009+0252 to z=2.9344, with high precision (dz=2 10^{-4}). Such observations will become routine in determining redshifts in the era of the Atacama Large Millimeter/submillimeter Array (ALMA).Comment: 5 pages, 3 figures, accepted by ApJ

    Preface

    Get PDF
    pre-printThis volume contains the collection of symposium papers presented at the Philosophy of Science Association Meeting in Montreal, November 4-6, 2010, selected for publication. The volume also contains Nancy Cartwright's presidential address at the 2010 PSA. The huge amount of work required to referee all these submissions was carried out by the PSA 2010 Program Committee: Craig Callender, David Danks, Heather Douglas, Marc Ereshefsky, Branden Fitelson, Roman Frigg, Nicholas Huggett, James Joyce, Ron Mallon, Wayne Myrvold, Samir Okasha, Julian Reiss, Margaret Schabas, Robert Skipper, David Stump, Martin Thomson-Jones, and J. D. Trout

    Herbert Simon's computational models of scientific discovery

    Get PDF
    Journal ArticleHerbert Simon's work on scientific discovery deserves serious attention by philosophers of science for several reasons. First, Simon was an early advocate of rational scientific discovery, contra Popper and logical empiricist philosophers of science (Simon 1966). This proposal spurred on investigation of scientific discovery in Philosophy; of science, as philosophers used and developed Simon's notions of "problem solving" and "heuristics" in attempts to provide rational accounts of scientific discovery (See Nickles 1980a, Wimsatt 1980)

    CO excitation in four IR luminous galaxies

    Get PDF
    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds
    corecore